近日,山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院閆銀發(fā)教授團(tuán)隊(duì)在《Soil & Tillage Research》上發(fā)表題為“Multi-spectral evaluation of total nitrogen, phosphorus and potassium content in soil using Vis-NIR spectroscopy based on a modified support vector machine with whale optimization algorithm”的最新研究成果。機(jī)電學(xué)院劉莫塵副教授為第一作者,楊慶璐副教授、鹿瑤副教授為共同通訊作者,山東農(nóng)業(yè)大學(xué)為第一通訊單位。
土壤中的營養(yǎng)元素如氮、磷、鉀,對作物生長至關(guān)重要。土壤養(yǎng)分均衡不僅能有效提升作物產(chǎn)量,而且能促進(jìn)早期植物根系的形成和生長,提高植物適應(yīng)外界環(huán)境條件的能力。長期以來的過度施肥等不合理施肥方法導(dǎo)致農(nóng)業(yè)生產(chǎn)水平及效率低下、肥料資源浪費(fèi)嚴(yán)重,制約綠色循環(huán)農(nóng)業(yè)的發(fā)展。因此,準(zhǔn)確獲取土壤養(yǎng)分含量對于指導(dǎo)合理施肥、提升產(chǎn)量和實(shí)現(xiàn)現(xiàn)代精準(zhǔn)農(nóng)業(yè)具有重要意義。目前,傳統(tǒng)的化學(xué)檢測方法雖精確,但耗時、檢測周期長且操作復(fù)雜,無法提供土壤中養(yǎng)分的時空分布特征信息,難以滿足快速、非破壞性檢測的需求。
圖1 基于WOA-SVM算法的土壤中氮、磷、鉀含量多光譜預(yù)測評估
針對以上技術(shù)難題,研究團(tuán)隊(duì)采用可見-近紅外光譜(Vis-NIR,350–2500 nm)檢測手段,開發(fā)一種基于機(jī)器學(xué)習(xí)算法的快速、低成本、高精度的土壤營養(yǎng)成分檢測方法,特別針對總氮(TN)、總磷(TP)和總鉀(TK)的精準(zhǔn)測定,助力現(xiàn)代化精準(zhǔn)農(nóng)業(yè)的發(fā)展。具體的,本研究采用融合徑向基核函數(shù)(RBF)與多項(xiàng)式核函數(shù)(Poly)的RBF-Poly混合核函數(shù),聯(lián)合支持向量機(jī)(SVM)定量預(yù)測算法,構(gòu)建土壤中總氮、總磷、總鉀等養(yǎng)分的定量預(yù)測模型。引入鯨魚優(yōu)化算法(WOA)優(yōu)化模型中g(shù)(核函數(shù)參數(shù))、c(懲罰因子)和γ(權(quán)重系數(shù))參數(shù),優(yōu)化模型預(yù)測結(jié)果。研究結(jié)果表明,對于TN、TP和TK的最優(yōu)模型驗(yàn)證集預(yù)測結(jié)果分別為0.902、0.937和0.904,模型剩余預(yù)測偏差分別達(dá)到3.206、3.939和2.608,為準(zhǔn)確、無損檢測土壤養(yǎng)分提供了穩(wěn)定可靠的預(yù)測模型。該研究成果在農(nóng)業(yè)與環(huán)境管理實(shí)踐中具有重要應(yīng)用價值,有助于實(shí)現(xiàn)更高效、更準(zhǔn)確的土壤養(yǎng)分監(jiān)測與管理。
圖2 基于SPA的土壤中氮(a)、磷(b)、鉀(c)特征提取結(jié)果
圖3 鯨魚優(yōu)化算法(WOA)參數(shù)優(yōu)化結(jié)果
該研究得到了國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目以及山東省自然科學(xué)基金項(xiàng)目的資助。
編 輯:萬 千
審 核:賈 波